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ABSTKACT 

Bounds are obtained for the limiting distribution of the 
delay in queue for a GI/G/1 system via Martingale theory. 
These bounds are somewhat stronger than similar bounds 
recently obtained by Kingman. Simplifications of the 
bounds are obtained in the special cases where the ser- 
vice distribution is either 1FR, DFR, NEU or NWU. 
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1.    INTRODUCTION \ 

Consider the usual Gl/G/1 queue with interarrlval times between customers 

Xj^.X , ...  and «ervlce times ^.Y., ..., where ECY^ < ECX^ < " . Let 

U. = Y. - X, and assume that there exists a nonzero value 6 such that 
i   i   i 

[•"'] = 1 .  If such a value of 6 exists then by Jensen's inequality It 

mus t be positive since EU, < 0 . Let D  denote the delay in queue of the 

n   customer, and let 

D(t) - 11m P{D > t} . 
n~   n 

In [1] and [2] the following inequality was proven by Kingman 

ae"et 1 D(t)  < e"8t 

where 

a - InffdFCy)/ /V(y-0<lP(y) 
'T. t J 

and where   F    is the distribution of   U.  .    Kingman proved the right side of 

the above inequality in [1] by using Kolmogorov's inequality for Martingales, 

and used a different technique in [2l to obtain the complete inequality.    Fol- 

lowing the Martingale approach of Kingman but using an appropriate stopping time 

rather than Kolmogorov's inequality a somewhat sharper inequality will now be 

obtained. 
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2.    THE INEQUALITIES 

As was shown by Llndley [3] 

D(t) = P |!v t for some n ■ 1,2, ... } . 

n 
e I "i 

3  •L 

If we let Z ■ e     , then as Z  Is the product of Independent random 

variables each with mean 1, It follows that \Z   nj>l} Is a Martingale. For 

a fixed positive constant A , define the stopping time N. by 

NA - 1st n such that either Z > e   or Z < e   . 
A n n 

As Is well known the moment generating function of N. exists In a region 

about 0 and thus by Martingale theory 

1 - E(Z ) - E n W 

(1) - E 

9K    NA 
1      X (p. >) 

N, 
9fül     NA 

•    1        II "i < " A < - A 

m Now, NA 

f (2) E 

e lu 
e    1    'l 

NA 

1    1       • 
■ 
; *hl 

e8tE (l^A 

By conditioning on N. and  ^ U. we obtain that 
A      1  i 

l\>t 
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(3) inf E 
0<r 

■e(u-r) 
e  1   1 "i > rJ i 

(^1-) 
N A 

1 
£ sup E e  "   I Ul * r 

0<r L 

Also, since 

lim P 
A-x» (pi'') P O U > t for some n < »j 

ll 1 
D(t) 

and 
m • 

NA 
elu1 NA 

lim E e   1        1 ,? Ui < ' A 

A-»« 1                   J 

we obtain from (1). (2), and (3). by letting A * - that 

■ V 
- 

, i 

-et -et 

(4) 
sup E 
0<r 

"e(Vr> ,    '" *      I U1 > r 

< D(t) < 

inf E|e 
0<r 

5 6 

eOJj-r) 
| U, > r_ 

Note that the left side inequality is just the left side of Kingman's inequality 

while the right sided inequality is stronger than Kingman's. 

A somewhat weaker though probably more useful inequality based on the 

service distribution can be obtained from the above as follows: 

E 
fecvr)     "I  re[Y1.(x1+r)] .      t' # 
e  1   | 1^ > rj - E|_e I Yl > xl + rJ • 

Hence, by conditioning on Xj^ we obtain that 

ffirv-^     1  re(u,-r) fed.-f) 
e     '        I  Y,  > sj< ELe ' 1        I Ü, > rJ  < sup ELe | Y, > sj 

inf E 
0<8 

VMM 

The sup and inf are taken over all nonnegative values of r for which The sup 

P^ > r) > 0 
,_- ~~^*fKrM,i*lm».4, 



As this is true for all    r , we obtain that 

sup E 
0<r 

inf E 
0<r 

fedi -r)              I             re(Y-8) "1 
[e      •L | U1 > rj  <. sup E [e     x I ^ > sj 

re(urr),    i     re(v8>, i Le I U^rJilnfE^ lY^sJ 

(5) 

Thus, from (4) we obtain 

-et 

sup E 
0<s    u 

eCY^a) 
Yj^ > s 

< 5(0 < 
-et 

Inf E 
0<s 

• |  Y1 > sj 

A very Important special case occurs when the service times are exponentially 

distributed with mean    1/y .    That Is, when the system Is a    G/M/l    queue.    In 

this case, using the lack of memory of the exponential distribution we have that 

the conditional distribution of    Y.  - s    given that    Y.  > s    Is Just exponential 

with mean    1/y .    Hence, 

sup E 
s 

feCY-s) 1 TeCY.-s) "I 
[e     1        I Y1 > sj - inf E[e     1        | yi > sj - -^ 

M - e 

and thus In the G/M/l case 

BCO-jfj."" 

In certain special cases the sup and Inf In equation (5) can be more 

easily expressed. We say that the service distribution G Is NBU If 

G(s + t) <. G(s)G(t)   for all s,t >. 0 

and It Is said to be NWÜ If 

The sup and Inf In equation (5) are taken over all nonnegative values of 
s for which POf. > s) > 0 . 
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G(s + t)   >. G(s)Q(t)        for all    s,t >. 0 

where    G(t) - 1 - G(t)   .    Thus    G    is   NBU (NWU)    means that the remaining 

service time of a customer who has already been in service for some fixed 

time is always stochastically smaller (larger) than the service time of a 

customer just entering service. 

Since   V   being stochastically larger than   W    implies that 

E[f (V)] > E[f (W)]    for all Increasing functions    f  , we obtain that if    G 

is    NBU   with   6(0) « 0    then 

sup E 
0<8 

!>>-•> lYi>J4i 
while if G is NWU with G(0) - 0 then 

inf E 
0<8 

re(Y-8)     1  feY/l 

If we make the stronger (than NBU) assumption that G is IFR (that 

is, that —* *• decreases in t for all s ) then it easily follows when 
G(t) 

G(0) - 0 that 

sup E 
0<s 

[e6^ | Yl > .] - .[.i 
and 

inf E 
0<8 

re<Yr8) ,       1        re(V8) ,       1 
[e  A   I Y. > aj - lim Ele    • I Y. > si 

S 'n 

where M - sup{t : G(t) > 0} . 

The terminology NBU (new better than used) originated in reliability litera- 
ture where it means that if G is the distribution of the lifetime of a 
component then the remaining life of any s year old (that is, any used) item 
is stochastically smaller than the lifetime of a new item. 

\ 
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Similarly if G is assumed to be DFR (that is, if it is assumed that 

—^ *■ increases in t for all s) then it follows when G(0) - 0 that 
G(t) 

sup E 
0<s 

[9(^-8) .    1    feCY.-s)     1 
[e x I Yj^ > sj = lim ELe  A   | Yj^ > sj 

inf E 
0<s 

fea-s)     1  feY."] 
[e  1   | Y1 > sj - E[e ^ . 

The importance of DFR service time distributions partly derives from the 

fact that If the actual service distribution is a mixture of other distributions 

each of which is DFR (for instance, each may be exponential) then the service 

distribution is also DFR . 
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